Decoupling the data to be manipulated from the proofs that the manipulations are justified
Question
I have a type of lists whose heads and tails must be in a certain sense "compatible":
Inductive tag := A | B. (* Just an example *) Inductive element : tag -> tag -> Set := | AA : element A A | AB : element A B | BB : element B B. (* Also just an example *) Inductive estack : tag -> tag -> Set := | ENil : forall t, estack t t | ECons : forall r s t, element r s -> estack s t -> estack r t.
However, I do not like this code very much, for the following reasons:
It is not modular: The ad-hoc list data constructors are intrinsically coupled with the proofs that the heads and tails are compatible --- the tags.
It does not favor code reuse: I am forced to redefine the usual list functions (such as list concatenation) and re-prove the usual list theorems (such as the associativity of list concatenation).
I have a different approach in mind, which consists of three steps:
Defining a single type of tagged elements (as opposed to a family of tagged types of elements):
Inductive taggedElement := Tagged : forall t1 t2, element t1 t2 -> taggedElement.
Defining the type of arbitrary (that is, either valid or invalid) lists of tagged elements:
Definition taggedElementStack := list taggedElement.
Defining a valid list of tagged elements as a tuple whose elements are an arbitrary list of tagged elements and a proof that the elements are compatible with the adjacent ones.
(* I have no idea how to do this in Coq, hence the question! * * I am going to use pseudomathematical notation. I am not well versed in either * mathematics or theoretical computer science, so please do not beat me with a * stick if I say something that is completely bogus! * * I want to construct the type * * (tes : taggedElementStack, b : proof that P(tes) holds) * * where P(tes) is a predicate that is only true when, for every sublist of tes, * including tes itself, the heads and tails are compatible. *)
How would I perform the third step in Coq?
Answer
Look at your estack, what does it do? Generalize! element is just a relation (A -> A -> Set), tag is just a Set. What do you get?
Inductive RTList {I : Set} (X : Rel I) : Rel I :=
| RTNil : forall {i : I}, RTList X i i
| RTCons : forall {i j k : I}, X i j -> RTList X j k -> RTList X i k.
(Rel ist just a Definition with Rel I := I -> I -> Set.)
Reflexive-transitive closure! That is common, reusable and modular. Or so you'd think.
The only implementation I found in Coq's libs is in Coq.Relations.Relation_Operators, named clos_refl_trans, differently structured and locked into Prop (all according to the docs, didn't try it).
You'll probably have to re-implement that or find a library somewhere. At least, you'll only have to do this once (or up to three times for Set, Prop and Type).
Your other idea will probably be harder to manage. Look at NoDup for something that's similar to your description, you might be able to reuse the pattern. If you really want that. NoDup uses In, which is a function that checks if an element is in a list. The last time I tried using it, I found it considerably harder to solve proofs involving In. You can't just destruct but have to apply helper lemmas, you have to carefully unfold exactly $n levels, folding back is hard etc. etc. I'd suggest that unless it's truly necessary, you'd better stick with data types for Props.