Import <Module> vs. Include <Module> in Coq Module system
Question
What is the exact semantics of Include M1 inside another module, say M? How is it different from doing Import M1 inside the module M? More precisely what is the semantics of the following command:
Module Type M := M1 <+ M2 <+ M3.
Answer
To summarize the semantics of both vernacular commands:
The command Include M1 (which can be used in the definition of a module or a module type) asks Coq to make a copy of all the fields of M1. Thus, it acts just like a "copy-and-paste" of the contents of M1 inside the ambient module (resp. module type).
The command Import M1 (which can also be used in the definition of a module or a module type, but additionally requires that M1 is a module) allows one to refer to the fields of M1 with their short identifier (i.e., without needing to use qualified identifiers M1.field_name)
Next, the syntax
Module Type M := M1 <+ M2 <+ M3.
is a shortcut for:
Module Type M. Include M1. Include M2. Include M3. End M.
The relevant sections of Coq's reference manual are Sect. 2.5.1 (Include), Sect. 2.5.8 (Import) and you may also want to take a look at the Export command (a variant of Import).
If at some point you hesitate between Include and Import, you should probably try to use Import in the first place, because it will have a lighter effect (it won't clone the contents of the specified module but just define shorter names).
Finally, below are two comprehensive examples that illustrate the use of modules, module types, and functors in Coq as well as the commands Include and Import:
(********************************************) (* Example involving a parameterized module *) (********************************************) (* A signature *) Module Type MT. Parameter t : Type. End MT. (* A bigger signature *) Module Type MT1. Include MT. Parameter u : t. Parameter f : t -> t. End MT1. (* A parameterized module *) Module F1 (M1 : MT1). Import M1. (* => we can now write f rather than M1.f *) Definition fu := f u. End F1. (* A module implementing MT1 *) Module M1 <: MT1. (* => check the signature but don't make the module opaque *) Definition t := nat. Definition u := O. Definition f := S. End M1. (* Instantiation *) Module FM1 := F1 M1.
and I recall that Compute is a shortcut for Eval vm_compute in
(**********************************************) (* Extra example: a parameterized signature *) (* *) (* It can be noted that this feature of Coq *) (* module types has no equivalent in OCaml... *) (**********************************************) Module Type MT2 (M : MT). Parameter u : M.t. Import M. (* => we can now write t rather than M.t *) Parameter f : t -> t. End MT2. (* Another parameterized module *) Module F2 (M : MT) (M2 : MT2 M). Import M2. Definition fu := f u. End F2. (* Modules implementing MT and MT2 *) Module M <: MT. Definition t := bool. End M. Module M2 <: MT2 M. Definition u := false. Definition f := negb. End M2. (* Instantiation *) Module FM2 := F2 M M2.