Proving decidability for a datatype that includes a vector

Question

I'm trying to work with a datatype that represents expressions in a sort of universal algebra context. The usual way to express this in (pen and paper) maths is that you have a set of function symbols, F, together with an arity function. An expression is a tree where each node is labelled with a function symbol and it has as many children as its arity. In this particular example, I've also got a set of atomic variables that get injected explicitly as terms.

It's pretty clear how to write this down with Coq (I've got a snippet of code at the bottom), but I'd like to prove some sort of decidability result. I've managed to prove decidability for vectors ("If I have decidability on A, then I can get decidability on VectorDef.t A n"), but I can't work out how to do the same for my tree type.

I tried doing an explicit recursion over the structure of a tree, but I ended up needing to call out to my "decidable vector" function, which doesn't get past the termination checker. This is reasonable, since the vector function expects to be given a discriminator for arbitrary elements of its underlying type and this obviously doesn't bottom out!

I can't work out how to tell Coq that (by induction) I have decidability for some terms, and these are the only terms that appear in the vectors in question. Is there a standard trick for doing this sort of thing?

Below, the data types in question:

Require Vectors.VectorDef.

Definition vec := VectorDef.t.

Section VTree.
  (* If it helps, I have a definition for this function *)
  Variable dec_vec : forall A : Type,
    (forall x y : A, {x = y} + {x <> y}) ->
    forall (n : nat) (v v' : vec A n), {v = v'} + {v <> v'}.

  Variable V : Set.
  Variable F : Set.
  Variable a : F -> nat.

  Inductive VTree : Type :=
  | varTerm : V -> VTree
  | funTerm (f : F) (ts : vec VTree (a f)) : VTree.

  Section DecVTree.
    Hypothesis decV : forall x y : V, {x = y} + {x <> y}.
    Hypothesis decF : forall x y : F, {x = y} + {x <> y}.

    
dec_vec: forall A : Type, (forall x y : A, {x = y} + {x <> y}) -> forall (n : nat) (v v' : vec A n), {v = v'} + {v <> v'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}

forall x y : VTree, {x = y} + {x <> y}
(* ??? *)

Answer (Li-yao Xia)

There are two challenging aspects to this problem.

  1. Dependently typed programming with indexed types in Coq

  2. Nested recursive types

Dependently typed programming with indexed types in Coq

By "indexed type" I am referring here specifically to inductive types like Vector.t, where the constructors refine some of the type arguments. These arguments are called indices, and must appear between : and := in the type signature:

Inductive Vector (A : Type) : nat (* <- index *) -> Type :=
| nil : Vector A 0
| cons : A -> forall n, Vector A n -> Vector A (S n).

Indexed inductive types are very useful to define propositions, where the terms don't matter. But for actual data, the short story here is: don't do it. It's technically possible, but it's a very deep rabbit hole, and overall quite a pain to work with, in large part because dependent pattern-matching in Coq is such an unintuitive construct. For example, see this blogpost: https://homes.cs.washington.edu/~jrw12/dep-destruct.html

A less extreme solution is to give up on other "dependently-typed" aspects of this program. The next candidate on the chopping block here is sumbool ({ _ } + { _ }). If the functions (and parameters) return bool instead, this makes them reasonably easy to define (cough, see next section). Proving their correctness is still a problem but at least you have something to compute with.

Two general alternatives to inductive indexed types are:

  • Just use the flat version (list instead of vec), giving up some "by construction" guarantees.

  • Make the type a function of the indices as a Definition (or Fixpoint), instead of Inductive. Here we use unit and prod as building blocks for such types, but you may have to make up your own for more elaborate types. A lot of dependent pattern-matching will be necessary.

    Fixpoint vec (A : Set) (n : nat) :=
      match n with
      | O => unit | S n => (A * vec A n)%type
      end.

You might also want to reconsider the representation of the language you want to implement. For example, do you really want to represent arities as explicitly as a function on symbols? (That could certainly be the case.) For example, could you not restrict this to symbols of arities 0, 1, 2?

Nested recursive types

These are recursive types whose recursive occurrences are inside other data types (which may be recursive). To simplify the discussion, to unclutter the code, and because of the aforementioned issues with dependent types in Coq, consider the following type using list instead of vec and with one fewer constructor:

Inductive LTree : Type :=
| funTerm : list LTree -> LTree.

You can define recursive functions on such a type with Fixpoint, but you have to be particularly careful about how recursive calls are nested. Of course, this actually matters with any recursive type, but the pattern is much more natural when the recursion is not nested, so the problem is less noticeable.

Below is how we can decide equality for LTree. We give up the dependent sumbool, returning a bool instead. The definition of dec_list is standard and generic.

Require Import List.
Import ListNotations.

Section List.

Context {A : Type} (decA : A -> A -> bool).

Fixpoint dec_list (l l' : list A) : bool :=
  match l, l' with
  | [], [] => true
  | a :: l0, a' :: l0' =>
    decA a a' && dec_list l0 l0'
  | _, _ => false
  end.

End List.

Then equality of LTree looks innocent...

Fixpoint decLTree (x y : LTree) : bool :=
  match x, y with
  | funTerm lx, funTerm ly =>
    dec_list decLTree lx ly
  end.

... but there are very subtle details that one needs to be aware of to convince Coq that the recursion is structurally decreasing.

The well-formedness of decLTree specifically depends in a very delicate way on how dec_list uses its argument decA, so dec_list must be a transparent definition:

  1. It is only being applied to a subterm of the first list (you could make it the second if you want, with some struct annotations).

  2. decA is bound outside of Fixpoint dec_list. The function decLTree would not be well-formed if that line instead read Fixpoint dec_list {A : Type} (decA : A -> A -> bool).

It's also possible to package these tricks up by writing some general recursion/induction schemes for LTree/VTree.

Answer (Rupert Swarbrick)

While Li-yao made some useful points, the dependent types aren't that bad! It turns out that the reason my previous script didn't work is that I'd used Qed rather than Defined to finish my decidability proof for vectors.

Here's a complete working proof:

Require Vectors.VectorDef.
Require Import Logic.Eqdep_dec.
Require Import PeanoNat.

Definition vec := VectorDef.t.

Section dec_vec.
  Variable A : Type.
  Hypothesis decA : forall x y : A, {x = y} + {x <> y}.

  
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n: nat
v, v': vec A n

{v = v'} + {v <> v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A

{VectorDef.cons A a n v = VectorDef.cons A a' n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a' n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A

{VectorDef.cons A a n v = VectorDef.cons A a' n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a' n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
eqaH: a = a'

{VectorDef.cons A a n v = VectorDef.cons A a' n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a' n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
neaH: a <> a'
{VectorDef.cons A a n v = VectorDef.cons A a' n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a' n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
eqaH: a = a'

{VectorDef.cons A a n v = VectorDef.cons A a' n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a' n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a: A

{VectorDef.cons A a n v = VectorDef.cons A a n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
eqvH: v = v'
a: A

{VectorDef.cons A a n v = VectorDef.cons A a n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
nevH: v <> v'
a: A
{VectorDef.cons A a n v = VectorDef.cons A a n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
eqvH: v = v'
a: A

{VectorDef.cons A a n v = VectorDef.cons A a n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
eqvH: v = v'
a: A

{VectorDef.cons A a n v = VectorDef.cons A a n v} + {VectorDef.cons A a n v <> VectorDef.cons A a n v}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
eqvH: v = v'
a: A

VectorDef.cons A a n v = VectorDef.cons A a n v
exact eq_refl.
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
nevH: v <> v'
a: A

{VectorDef.cons A a n v = VectorDef.cons A a n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
nevH: v <> v'
a: A

VectorDef.cons A a n v <> VectorDef.cons A a n v'
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
nevH: v <> v'
a: A
consH: VectorDef.cons A a n v = VectorDef.cons A a n v'

False
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
nevH: v <> v'
a: A
consH: VectorDef.cons A a n v = VectorDef.cons A a n v'
H0: existT (fun n : nat => VectorDef.t A n) n v = existT (fun n : nat => VectorDef.t A n) n v'

False
exact (nevH (inj_pair2_eq_dec nat Nat.eq_dec (vec A) n v v' H0)).
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
neaH: a <> a'

{VectorDef.cons A a n v = VectorDef.cons A a' n v'} + {VectorDef.cons A a n v <> VectorDef.cons A a' n v'}
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
neaH: a <> a'

VectorDef.cons A a n v <> VectorDef.cons A a' n v'
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
neaH: a <> a'
consH: VectorDef.cons A a n v = VectorDef.cons A a' n v'

False
A: Type
decA: forall x y : A, {x = y} + {x <> y}
n0: nat
v0, v'0: vec A n0
n: nat
v, v': VectorDef.t A n
veq: (fun (n : nat) (x y : VectorDef.t A n) => {x = y} + {x <> y}) n v v'
a, a': A
neaH: a <> a'
consH: VectorDef.cons A a n v = VectorDef.cons A a' n v'
H0: a = a'
H1: existT (fun n : nat => VectorDef.t A n) n v = existT (fun n : nat => VectorDef.t A n) n v'

False
contradiction. Defined. End dec_vec. Section VTree. Variable V : Set. Variable F : Set. Variable a : F -> nat. Inductive VTree : Type := | varTerm : V -> VTree | funTerm (f : F) (ts : vec VTree (a f)) : VTree. Section DecVTree. Hypothesis decV : forall x y : V, {x = y} + {x <> y}. Hypothesis decF : forall x y : F, {x = y} + {x <> y}.
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
v: V
f: F
ts: vec VTree (a f)

varTerm v <> funTerm f ts
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
v: V
f: F
ts: vec VTree (a f)

varTerm v <> funTerm f ts
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
v: V
f: F
ts: vec VTree (a f)
eqH: varTerm v = funTerm f ts

False
inversion eqH. Qed.
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree

{x = y} + {x <> y}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V

{varTerm v = varTerm v'} + {varTerm v <> varTerm v'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v: V
f: F
ts: vec VTree (a f)
{varTerm v = funTerm f ts} + {varTerm v <> funTerm f ts}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
v: V
{funTerm f ts = varTerm v} + {funTerm f ts <> varTerm v}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')
{funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V

{varTerm v = varTerm v'} + {varTerm v <> varTerm v'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V
eqH: v = v'

{varTerm v = varTerm v'} + {varTerm v <> varTerm v'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V
neH: v <> v'
{varTerm v = varTerm v'} + {varTerm v <> varTerm v'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V
eqH: v = v'

{varTerm v = varTerm v'} + {varTerm v <> varTerm v'}
exact (left (f_equal varTerm eqH)).
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V
neH: v <> v'

{varTerm v = varTerm v'} + {varTerm v <> varTerm v'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v, v': V
neH: v <> v'

varTerm v <> varTerm v'
injection; tauto.
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
v: V
f: F
ts: vec VTree (a f)

{varTerm v = funTerm f ts} + {varTerm v <> funTerm f ts}
exact (right (varTerm_ne_funTerm v f ts)).
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
v: V

{funTerm f ts = varTerm v} + {funTerm f ts <> varTerm v}
exact (right (not_eq_sym (varTerm_ne_funTerm v f ts))).
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')

{funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')
feqH: f = f'

{funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')
fneH: f <> f'
{funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')
feqH: f = f'

{funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
feqH: f = f'

forall ts' : vec VTree (a f'), {funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
feqH: f = f'

forall ts' : vec VTree (a f), {funTerm f ts = funTerm f ts'} + {funTerm f ts <> funTerm f ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)

{funTerm f ts = funTerm f ts'} + {funTerm f ts <> funTerm f ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tseqH: ts = ts'

{funTerm f ts = funTerm f ts'} + {funTerm f ts <> funTerm f ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tsneH: ts <> ts'
{funTerm f ts = funTerm f ts'} + {funTerm f ts <> funTerm f ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tseqH: ts = ts'

{funTerm f ts = funTerm f ts'} + {funTerm f ts <> funTerm f ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tseqH: ts = ts'

funTerm f ts = funTerm f ts'
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tseqH: ts = ts'

ts = ts'
exact tseqH.
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tsneH: ts <> ts'

{funTerm f ts = funTerm f ts'} + {funTerm f ts <> funTerm f ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tsneH: ts <> ts'

funTerm f ts <> funTerm f ts'
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tsneH: ts <> ts'
funH: funTerm f ts = funTerm f ts'

False
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f)
tsneH: ts <> ts'
funH: funTerm f ts = funTerm f ts'
H0: existT (fun f : F => vec VTree (a f)) f ts = existT (fun f : F => vec VTree (a f)) f ts'

False
exact (tsneH (inj_pair2_eq_dec F decF (fun f => vec VTree (a f)) f ts ts' H0)).
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')
fneH: f <> f'

{funTerm f ts = funTerm f' ts'} + {funTerm f ts <> funTerm f' ts'}
V, F: Set
a: F -> nat
decV: forall x y : V, {x = y} + {x <> y}
decF: forall x y : F, {x = y} + {x <> y}
decVTree: forall x y : VTree, {x = y} + {x <> y}
x, y: VTree
f: F
ts: vec VTree (a f)
f': F
ts': vec VTree (a f')
fneH: f <> f'

funTerm f ts <> funTerm f' ts'
injection; tauto. Qed. End DecVTree. End VTree.